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THEORY OF DRY FRICTION OF RUBBERY MATERIALS 

Yu. A. Buevich  and A. I. Leonov 

Zhurna l  P r ik l adno i  i Mekhaniki  i Tekh ichesko i  F iz ik i ,  No. 

Friction of solids involves short-range forces between adjacent surface 
layers, which are largely determined by theshapeandstruetureofthose 
layers, which are themselves determined to a considerable extent by 
the relative velocity. A theory of friction thus involves the micro- 
structure and the detailed physical phenomena near the surfaces. 

However, most existing theories are based on phenomenological 
(essentially macroscopic) concepts (see [1] for a survey), though the 
explicit use of microscopic concepts is presented in [2], where it is 
shown that one elastic body sliding over another gives rise to elastic 
waves that carry energy away from the contact surface. This loss may 
be treated formally as due to a tangential force resisting the motion. 
The force defined in this way has a falling velocity characteristic. 

There is much evidence that the friction differs greatly from that for 
ordinary elastic bodies if one body (or both) should be highly elastic 
(robber, polymer, etc) [3]. A model describing these differences 
would be of considerable interest. 

Here we consider the somewhat idealized case of a rubbery body 
sliding over a crystalline one; the frictional force is deduced as a 
function of the velocity and other parameters. The surfaces are taken 
as smooth and clean, while the bodies are homogeneous. Various 
simplifying assumptions are made, but these are unimportant from the 
qualitative standpoint. 

1. PHYSICAL MODEL OF FRICTION 

Cons ide r  the mot ion  ( re la t ive  ve loc i ty  v) of a 
r u b b e r l i k e  body 1 in the space  z > 0 (Fig.  la)  o v e r  
the e l a s t i c  body z in the space  z < 0. The bodies  
i n t e r a c t  v ia  d i s c r e t e  se t s  of f o r c e  c e n t e r s  d i s t r ibu ted  

throughout  the vo lumes ;  the de ta i l ed  na tu re  of these  
c en t e r s  wi l l  not be d i s cus sed ,  but they may be supposed  
to be m i c r o r o u g h n e s s  o r  (if  the gap 6 is v e r y  smal l )  
individual  g roups  of chain m o l e c u l e s .  The  only 

i m p o r t a n t  point is that  the in t e rac t ion  occu r s  via  this  
se t  of c e n t e r s .  

1. Body 2 has a comp le t e ly  pe r iod ic  s t r u c t u r e ;  the 
f o r c e  c e n t e r s  (points in Fig.  la )  a r e  jo ined by r ig id  
bonds.  P o s s i b l e  o sc i l l a t i on  and d i s p l a c e m e n t  of these  
c e n t e r s  a r e  neg lec ted .  The  r epea t  d i s t ance  2L of 
body 2 i n t h e  d i r e c t i o n  of the x axis  is  then independent  
of the ve loc i ty .  

2. The  s u r f a c e  l a y e r  of body 1 cons i s t s  of sawtooth 
cha ins  packed in a d i r e c t i o n  p a r a l l e l  to the  motion,  
t h e s e  chains  cons i s t i ng  of f o r c e  c e n t e r s  of s epa ra t i on  
a. T h e s e  chains  can be s t r a igh t ened  by the t ens ions  
p roduced  by the mot ion.  Then the s u r f a c e  of body 1 
has  a pe r iod i c  s t r u c t u r e ,  the r e p e a t  d i s t ances  be ing  

2/ a long the  x axis  and 2b along the z axis  (Fig. 1). 
Rea l  chains  have a spa t i a l  s t r u c t u r e ,  and t h e i r  l inks 
may l ie  in a v a r i e t y  of d i r e c t i o n s ;  h e r e  we s impl i fy  
the mode l  by a s s u m i n g  that  the chains  l ie  in p lanes  
p a r a l l e l  to the  (x, z) ptane. It wilI  b e c o m e  c l e a r  that 
the qua l i t a t ive  r e s u l t s  a r e  not affected.  

3. Re l a t i ve  mot ion  p roduces  t en s i l e  s t r e s s e s  that 

i n c r e a s e  with the f r i c t i ona l  f o r c e  Q. T h e s e  f o r c e s  
cause  the chains  to s t r a i gh t en  by reduc t ion  of the 
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angle  ~, d i s tance  a (Fig. lb) r e m a i n i n g  una l te red .  
T h e s e  chains  thus r e s e m b l e  the long s p i r a l  m o l e c u l e s  
o r  f i b e r s  of a rubbery  body, whi le  the change in a is 
due to the  e l a s t i c  f o r ce s .  Here  l = l (Q), ~nd 

dZ / dO > 0, 1 (0) = z0 (1.1) 

We also a lso  a s s u m e  that t h e r e  is  a f ini te  l imi t  
lor as Q - -  ~ (we neg lec t  chain rupture) .  

4. The s e p a r a t i o n 6  is gove rned  by the n o r m a l  
p r e s s u r e  of the upper  body on the l ower  one and by 
the spec i f i c  f o r c e  of i n t e r ac t ion  be tween  the s u r f a c e s  
of bodies  1 and 2. Th is  f o r c e  is an a t t r ac t ion  f o r 6  
l a rge ,  but r e p u l s i v e  f o r c e s  appea r  f o r 6  s m a l l ,  so 
t h e r e  is  a m a x i m u m  for  a g a p 5 ~  F i g u r e  2 shows this  
f o r c e f  (r) as a function of the d i s t ance  r be tween  the 
bodies ,  whi le  6 ,  c o r r e s p o n d s  to the m i n i m u m  poss ib le  
gap. The  a t t r ac t i on  at 6 l a r g e  is  due to f luctuat ion 
f ie lds  outs ide  the bodies ;  theory  [4] for  l a rge  gaps 
shows that  a 6-3 law appl ies ,  while  e x p e r i m e n t s  [5] 

show that  this  appl ies  down to gaps of about 0 .04 #. 
5. The chains  tend to come  t o g e t h e r  when the s u r -  

face  of body 1 is extended along the x axis ,  so the 
d i s t ance  b(Q) be tween  chains obeys 

d b / d Q < O ,  b(O) = b  o. (1.2) 

Thus body 1 is  r e p r e s e n t e d  as a network of f o r c e  
c e n t e r s  with pe r iod  2l (Q) along the x axis  and 2b(Q) 
along the z axis ,  one se t  of c en t e r s  being at a f ixed 
d i s tance  6 f r o m  the su r f ace  of body 2, while  the next 

se t  has a d i s tance  h(Q) f r o m  this  su r f ace  given by 

h = ~  + ( a  2 -  le) 'h, d h / d Q < O ,  h(O) = h  o. (1.3) 

We assume that there are finite limits b~ and h~ 

a s e  ~ . 

It is convenient, as in [2], to introduce the peri- 

odic functions fit(r) and ff2(r) whose periods correspond 

to the periodic structures of bodies i and 2 in the 

direction of motion and which are such that the force 

of interaction per unit area of body 2 is 

F(r, vt)---~2(r) I ~ l ( r ' - - ev t ) / ( I r - - r ' f )4V  1 (1.4) 

in which the in tegra t ion  is taken ove r  the vo lume  V1 of 

body 1; h e r e  a l lowance  is made  for  the r e l a t i v e  mot ion 
of constant  ve loc i ty  v, e being unit v e c t o r  along the 
x axis .  

We expand F( r ,  vt) as a F o u r i e r  s e r i e s :  

F(r, t) 7 , [ _ _ _  (z.5)  Fm~ 7) ]  
I l l ,  n 

It is obvious that  the y p ro jec t ion  Fy(r ,  vt) = 0; i t  
has been  shown [2] that  the conse rva t i on  of energy  in 
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the absence  of mot ion  gives F~ x) - 0. The re  is no 
loss  of gene ra l i ty  in a s s u m i n g  that F~ z) - 0. 

2. ENERGY DISSIPATION AND THE FORMAL 

EXPRESSION FOR THE FRICTIONAL FORCE 

To determine the energy flux away from the contact 

surface we must solve for the propagation of elastic 

waves in the spaces z > 0 and z < 0 in response to 

excitation at z = 0 by the periodic load of (1.4). For 

z < 0 this reduces to solving the wave equation for 

= div U (U being the displacement vector), which is 
easily done by separating the variables [2]. It has been 

shown that decaying Rayleigh waves are possible for 

mm ~ (nvL / cll) 2, 

and undamped s ine  waves  for 

mm ~ (nvL /cll.) 2, 

mm ~ (nvL / c21) ~, 

mm ~ (nvL / cfl) 2. 

Here c~ and c2 are the velocities of propagation of 

longitudinal and transverse waves respectively. 

An expression has been derived [2] for the energy 

flux W_ in the lower half-space on the assumption that 

m~0: 

co 

_ F (~) F ( ~ )  w = ~ { ( p ~ ) - ~  on o,-~+ 

r,~tk • 2 , ~ - ~ F  (~) F (z) ~ (2.1) " - ~  t V  k I ~ / J  O, n O, - n S  . 

t " " t Here  p is dens i ty ,  X and # a re  Lame coeff lcmn s, 
and F~,X)n'--" and F (z) a r e  F o u r i e r  coeff ic ients  for the 

--o,n 
projections of F(r, 0). 

Similarly we can derive W+, the flux into space 
z > O. Here the chains of body 1 may be oriented in 

the direction of motion not only in the surface but 
also in the volume if the load is sufficiently high. 
Then there will be several longitudinal and transverse 
waves that propagate with different velocities, but this 

is not a vital feature. 

O ~ _ x  

( a ) [ . . .  o . . , �9 "'Z ( b )  

Fig. 1 

If again  we put m ~ 0, the exp res s ion  for  W+ is 
en t i r e ly  analogous to (2.1). Equating W+ + W_ to the 
work of f r i c t ion  pe r  unit  t ime ,  we get 

oo 

Q = v-1 ~ i. z'(:r r,(:O - - .  F (z) F (z) ~ (2.2) \Wl~" O,i~. ~0, -n ~ ~~ O, n O, -n ]  " 

Here  wl and w2 a r e  quant i t ies  dependent  on the 
e las t ic  cons tan t s  of both bodies;  if both a re  c r y s -  
ta l l ine ,  the s u m m e d  exp re s s ion  is independent  of Q 
and v, so we get the fa l l ing veloci ty  c h a r a c t e r i s t i c  of 

[21. 

Above we have followed [2] in a s s u m i n g  m -~ 0. 
A r e a s o n a b l e  phys ica l  bas i s  can be given for this  
assumpt ion :  the e las t ic  waves a r e  genera ted  by the 
per iodic  s t r u c t u r e s  of bodies  1 and 2 moving with a 
re la t ive  ve loc i ty  v, as (1.4) shows. However,  he re  we 

V 

Fig. 2 

envisage only the propagation of existing waves, so, 

if the only waves of importance are those with wave- 

lengths much greater than the repeat distances, we 

can treat both bodies as continuous media. This cor- 

responds to m = 0 and also to v << rain (ci, c2). 

3. DEPENDENCE ON RELATIVE VELOCITY 

Consider the velocity characteristic of Q when the 

right-hand side of (2.2) depends on Q. For simplicity 

we consider (2.2) in the linear approximation, i.e., 

we put 

dol  / d Q = 0 ,  do)2 / d Q = 0 .  

It may be a s s u m e d  that the energy flux is p ropor -  
t ional  to the n u m b e r  of force  cen te r s  pe r  uni t  of body 
1, in which case  

W+ -}- W_ - -  1-1 . (3.1) 

From symmetry, we may replace the F(r, 0) of 

(1.5) by the force of interaction between the planar net 

of body 1 and the surface net of body 2. Here we may 

assume that, on average, F(X)(r, 0)~ 0, while 

F(Z)(r, 0) is periodic in'x and may be prepresented as a 

sum of terms describing the interaction of the surface 

of body 2 with planar nets of body 1 at distances of 
6, h, 5 + 2b, etc. The forces are of short range, so 

we have from (1.5) for the z-projection of F(r, 0) 

F(~) (r, O ) . . ~ ( x )  ~ ,B~/(h~) ,  B~ = C~l-V2, (3.2) 
k 

in w h i c h h  k = 5 ,  h, 6 + 2b, e t c ; t h e  C k a r e  cons tants  
of the o r de r  of uni ty and of the s a m e  sign,  while 

f ( r )  is as in Fig. 2. Subst i tut ion of (3.2) into (2.2) 

then gives 

w = Q v  = i ~ 
n = l  

Here ~n a re  the F o u r i e r  coeff ic ients  of ch(x ). 
Subst i tut ing (3.3) into (3.2) and taking only the f i r s t  
three  t e r m s  in the sum 

~, C~/(h~) 
15 

(it will be clear that this does not affect the results), 

we get 
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Q ~ (vl) -z [A~/(~) +A~] (h) + +An/(6 -b 2bo)l ~ = Too/ v. 

+ A3/(6 + 2b)1 ~ (3.4) 

in which AI ~ A2 ~ A3 a r e  new cons tants .  Di f fe ren-  
t i a t ion  of (3.4) with r e spec t  to Q read i ly  gives  

dQ 
d--v- IQ {--- 

d (lQ) 
= ~ --dQ-q + 2 [ A 1 / ( 6 )  -{- 

+ A~/(h) + A3/(6 -}- 25)]  • 

dl dh • + jj (3.5) 

Expres s ion  (3.5) nowhere  becomes  zero,  provided 
that none of the de r iva t ives  on the  r ight  in (3.5) becomes  
inf ini te ,  which is a s s u m e d  to be so; hence  Q(v) has no 
t u r n i n g  points .  

~2 

f' ~T Q2 Q ' 

Fig. 3 

The ac tua l  5 c o r r e s p o n d  to forces  of a t t r ac t ion  
be tween  the bodies ;  it  is na tu ra l  to a s s u m e  that h >5 ~ 
6 + 2b > 6 ~ F igu re  2 shows that d f / d r  < 0 in  this  
region.  F r o m  (1.2) and (1.3) we e o n c l u d e t h a t t h e t e r m s  
within the b r a c e s  in (3.5) have di f ferent  s igns .  

Cons ide r  the case  where  the denomina to r  of (3.5) 
becomes  zero.  Subst i tu t ion of (3.1) into (3.5) gives 

gp~(Q)= [A1/(6) + A2/(h) + A3/(6 + 2b)] d(lQ) 

= q)2(Q) = 2Ql[A~ dI dh " '  d(2b)] -~- r=h~QQ + A3 dd--~/r (3.6) r=s+2~" dQ J" 

It is  r ead i ly  seen  that the le f t -hand s ide takes  
f ini te  (nonzero) va lues  throughout  the range  of Q, with 
a monotonic  r i s e  f r o m  the value for  Q = 0 to that  for  
Q ~ oo. The r igh t -hand  side of (3.6) tends  to zero  for  
Q ~ 0 and Q ~ oo (we a s s u m e  that the de r iva t ives  of 
1-1oo and b-boo with r e s p e c t  to Q tend to zero  m o r e  
rapidIy  than as Q-1 and Q --* oo). This  means  that the 
r ight  s ide of (3.6) has a m a x i m u m  for  at l eas t  one Q. 

F o r  suff ic ient ly  l a rge  va lues  of the de r iva t ives  on the 
r ight  in {3.6) this  funct ion may exceed in  va lue  the 
left s ide of (3.6), in which case  the curves  r e p r e s e n -  
t ing the r ight  and left s ides  of (3.6) as funct ions  of Q 
mee t  at l eas t  at the two points Q1 and Q2, the de r i va -  
t ive of {3.5) becoming  inf in i te  at these  points  (Fig. 3 ) .  

Cons ide r  these  spec ia l  points  in m o r e  detai l .  F r o m  
(3.4) for v ~ 0 we get 

Q ~ (vloo) -z [Azl (6) + A J  (h~) + 

+As/(6 -k 2b~)l ~ = To / v. 

The de r iva t ive  of (3.5) is  negat ive in these  a s y m p -  
totic reg ions ,  and Q(v) d e c r e a s e s  as v i n c r e a s e s .  
The de r iva t ive  of (3.5) changes s ign at  Q1 and Q2, which 
co r r e sponds  to r i s e  in Q(v) f rom Q1 to Q2 over  the 
range  iv1, v2]. Hence the points (Q1, va) and (Q2, v2) in 
the (Q,v) plane r e p r e s e n t  cusps in Q = Q(v), while the 
curve  is as in Fig.  4. The f i r s t  point co r re sponds  to 
a m i n i m u m  and the second to a max imum.  The p r e s -  
ence of a m a x i m u m  is in good a g r e e m e n t  with the 
expe r imen ta l  evidence  [3]. 

Cons ider  now the genera l  behav io r  of the curve  of 
Fig. 4 r e sponse  to change in n o r m a l  p r e s s u r e .  In- 
c r e a se d  p r e s s u r e  causes  5,  h, 5 + 2b, etc. to move 
to the left in Fig.  2; 6 in the reg ion  r < 5 ~ co r re sponds  
roughly to an upper  bound to the f r i c t iona l  force  as a 
funct ion of p r e s s u r e ,  d f / d r  dec rea s ing  in magnitude,  
and the r ight  s ide  of (3.6) u l t ima te ly  becomes  less  
than the left for  al l  Q or  coincides  with it at one point 
(broken l ines  in Fig.  3). That  is ,  the region  of in-  
c r e a s i n g  f r i c t ion  as a function of veloci ty van i shes  as 
the p r e s s u r e  is r a i sed .  

The effects of e las t i c i ty  a r e  as follows. An ine las t ic  
body co r r e sponds  in this  model  to de r iva t ives  of h, b, 
etc.  with r e spe c t  to Q that a re  smal l ,  so the r ight  side 
of (3.6) becomes  l e s s  than the left. The r ight  side 
i n c r e a s e s  with the e las t ic i ty ,  and for  c e r t a i n  c r i t i c a l  
va lues  of the p a r a m e t e r s  i ts  cu rve  touches the curve  
of Fig.  3 r e p r e s e n t i n g  the left pa r t  of (3.6). Above 
this  the re  appears  a reg ion  as in Fig.  4. 

The l imi t s  of appl icabi l i ty  of these  qual i ta t ive  
r e su l t s  a re  as follows: The upper  bound of the veloci ty  
range  follows d i rec t ly  f rom the above: 

v ~ c  

in which c is the l eas t  of the ve loci t ies  of e las t ic  
waves in bodies  1 and 2. The lower bound to the range  
of v in which this  appl ies  has [2] been  d i scussed  for 
e las t ic  bodies:  

o o  

Q (v) = ~on, t < ~ pl~) ~ )  
- , ,  n" 0, - -  - ( 3 .7 )  v 

n = l  

In the p r e se n t  case  the lower  bound coincides  as to 
o r d e r  with the solut ion of (3.7), which gives ex t remely  
low veloc i t ies ,  e . g . ,  v of 0 . 5 - 1  c m / s e c  for  s tee l  on 
s teel .  

Q~ 

~z 

Q7 

Fig. 4 

S imi l a r ly  for  v ~ ~ we have 

Q ~ (VZo) -1 [A,/(8) + A d  (ho) + 
It is of i n t e r e s t  to compare  Fig.  4 with the r e su l t s  

of [2]. Q is  ve ry  sma l l  for  high v (but not ones in 
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exces s  of c); the t e n s i l e  s t r e s s e s  in the rubbe r l i ke  
body a r e  sma l l ,  so the p rob lem 1)~c~)mes that con-  
s i d e r e d  in [2]. Hence the a sympto te  of the c u r v e  of 
F i g u r e  4 fo r  l a rge  v is r e p r e s e n t e d  by the b roken  
l ine,  T ~ / v .  The  f r i c t ion  i n c r e a s e s  at lower  speeds ,  
and the s t r e s s e s  extend the p o l y m e r  chains ,  which 
b r ings  the f o r c e  c e n t e r s  of bodies  1 and 2 c l o s e r  
toge the r .  T h e r e  is thus a rapid  r i s e  in the fo r ce  of 
i n t e r ac t ion  in s o m e  range  v > v2 nea r  v2. Ul t imate ly  
the ex tens ion  of the chains  r e aches  a l imi t ,  which 
leads to fall  in the fo rce  in range  vl "- v < v2. The  
chains a r e  m a x i m a l l y  extended as v cont inues to de-  
c r e a s e ,  and the s u r f a c e  l a y e r s  of body 1 have an o r i -  
ented s t r u c t u r e ;  neg lec t ing  poss ib le  chain f a i l u r e  at 
high Q, we have  a s i tua t ion  c lose ly  r e s e m b l i n g  that  
env isaged  in [2]. Hence for  v < vl the Q(v) cu rve  of 
F i g u r e  4 tends to the a sympto t e  T0/v  (shown by the 

b roken  line),  with To ~ T ~ ,  in genera l .  
We a r e  indebted to G. I. Barenb la t t  for  a d i scuss ion .  
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